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Abstract. An algorithm for splitting permutation representations of finite
group over fields of characteristic zero into irreducible components is de-
scribed. The algorithm is based on the fact that the components of the in-
variant inner product in invariant subspaces are operators of projection into
these subspaces. An important part of the algorithm is the solution of sys-
tems of quadratic equations. A preliminary implementation of the algorithm
splits representations up to hundreds of thousands of dimensions. Examples
of computations are given.

1. Introduction. One of the central problems of group theory and its applications
in physics is the decomposition of linear representations of groups into irreducible
components. In general, the problem of splitting a module over an associative alge-
bra into irreducible submodules is quite nontrivial. An overview of the algorithmic
aspects of this problem can be found in [1]. For vector spaces over finite fields,
the most efficient is the Las Vegas type algorithm called MeatAxe. This algorithm
played an important role in solving the problem of classifying finite simple groups.
However, the approach used in the MeatAxe is ineffective in characteristic zero,
whereas quantum-mechanical problems are formulated just in Hilbert spaces over
fields of characteristic zero. Our algorithm deals with representations over such
fields, and its implementation copes with dimensions up to hundreds of thousands
that is not less than the dimensions achievable for the MeatAxe. The algorithm
requires knowledge of the centralizer ring of the considered group representation.
In the general case, the calculation of the centralizer ring is a problem of linear
algebra, namely, solving matrix equations of the form AX = XA. In the case of
permutation representations, there is an efficient algorithm for computing the cen-
tralizer ring — it is reduced to constructing the set of orbitals. In addition, permu-
tation representations are fundamental in the sense that any linear representation
of a finite group is a subrepresentation of some permutation representation, and
we use this fact in some quantum mechanical considerations [2, 3]. Therefore, we
consider here only permutation representations.
2. Mathematical preliminaries. Let G be a transitive permutation group on the set
Ω ∼= {1, . . . ,N}. The action of g ∈ G on i ∈ Ω is denoted by ig. A representation
of G in an N-dimensional vector space over a field F by the matrices P(g) with
the entries P(g)ij = δigj , where δij is the Kronecker delta, is called a permutation
representation. We assume that the permutation representation space is a Hilbert
space HN. From a constructive point of view it is sufficient to assume that the
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base field F is a minimal splitting field of the group G. Such field is a subfield of
an m-th cyclotomic field, where m is a divisor of the exponent of G. The field F ,
being an abelian extension of Q, is a constructive dense subfield of R or C.

An orbit of G on the Cartesian square Ω × Ω is called an orbital [5]. The
number of orbitals, R, is called the rank of G on Ω. Among the orbitals of a transi-
tive group there is one diagonal orbital, ∆1 = {(i, i) | i ∈ Ω}, which will always be
fixed as the first element in the list of orbitals ∆1, . . . ,∆R. For a transitive action
of G there is a natural one-to-one correspondence between the orbitals of G and
the orbits of a point stabilizer Gi: ∆←→ Σi = {j ∈ Ω | (i, j) ∈ ∆} . The Gi-orbits
are called suborbits and their cardinalities are called the suborbit lengths.

The invariance condition for a bilinear form A in the Hilbert space HN can
be written as the system of equations A = P(g)AP

(
g−1

)
, g ∈ G. It is easy to

verify that in terms of the entries the equations of this system have the form
(A)ij = (A)igjg . Thus, the matrices A1, . . . ,AR, where Ar is the characteris-
tic function of the orbital ∆r on the set Ω × Ω, form a basis of the centralizer
ring of the representation P. The multiplication table for this basis has the form
ApAq =

∑R
r=1 C

r
pqAr, where Crpq are non-negative integers. The commutativity of

the centralizer ring indicates that the representation P is multiplicity-free.
3. Algorithm and its implementation. Let T be a transformation (we can assume
that T is unitary) that splits the permutation representation P into M irreducible
components:

T−1P(g)T = 1⊕ Ud2(g)⊕ · · · ⊕ Udm(g)⊕ · · · ⊕ UdM (g) ,

where Udm is a dm-dimensional irreducible subrepresentation, ⊕ denotes the direct
sum of matrices, i.e., A⊕B = diag(A,B).

The matrix 1N is the standard inner product in any orthonormal basis. In the
splitting basis we have the following decomposition of the standard inner product

1N = 1d1=1⊕ · · · ⊕ 1dm ⊕ · · · ⊕ 1dM .

The inverse image of this decomposition in the original permutation basis is

1N = B1 + · · ·+ Bm + · · ·+ BM ,
where Bm is defined by

T−1BmT = 01+d2+···+dm−1
⊕1dm ⊕0dm+1+···+dM .

The main idea of the algorithm is based on the fact that Bm’s form a complete
set of orthogonal projectors, i.e., they are idempotent, B2m = Bm, and mutually
orthogonal, BmBm′ = 0N if m 6= m′. We see that all Bm’s can be obtained as
solutions of the idempotency equation X2−X = 0N for the generic invariant form
X = x1A1+ · · ·+xRAR. This is a system of quadratic polynomial equations in the
indeterminates x1, x2, . . . , xR. The polynomial system can be computed by using
the multiplication table. Let us write the projector in the basis of invariant forms:
Bm = bm,1A1 +bm,2A2 + · · ·+bm,RAR. It is easy to show that bm,1 = dm/N. Thus,
any solution of the idempotency system has the form [x∗1 = d/N, x∗2, . . . , x

∗
R] , where

d ∈ [1..N− 1] is either an irreducible dimension or a sum of such dimensions.



Irreducible Decomposition of Representations of Finite Groups 3

The core part of the algorithm is constructed as follows.
We set initially E(x1, x2, . . . , xR)←

{
X2 −X = 0N

}
.

Then we perform a loop on dimensions that starts with d = 1 and ends when
the sum of irreducible dimensions becomes equal to N.

For the current d we solve the system of equations E(d/N, x2, . . . , xR) . All so-
lutions belong to abelian extensions of Q, so their getting is always algorithmically
realizable.

If the system is incompatible, then go to the next d.
If E(d/N, x2, . . . , xR) describes a zero-dimensional ideal, then we have k (in-

cluding the case k = 1) different d-dimensional irreducible subrepresentations.
If the polynomial ideal has dimension h > 0, then we encounter an irreducible

component with a multiplicity k, where
⌊
k2/2

⌋
= h. In this case we select, by a

somewhat arbitrary procedure, k convenient mutually orthogonal representatives
in the family of equivalent subrepresentations.

In any case, if at the moment we have a solution Bm, we append Bm to
the list of irreducible projectors, and exclude from the further consideration the
corresponding invariant subspace by adding the linear orthogonality condition
BmX = 0N to the polynomial system:

E(x1, x2, . . . , xR)← E(x1, x2, . . . , xR) ∪ {BmX = 0N} .

After processing all Bm’s of dimension d, go to the next d.

The complete algorithm is implemented by two procedures:

1. The procedure PreparePolynomialData is a program written in C. The in-
put data for this program is a set of permutations of Ω that generates the
group G. The program computes the basis of the centralizer ring and its
multiplication table, constructs the idempotency and orthogonality polyno-
mials, and generates the code of the procedure SplitRepresentation that
processes the polynomial data. The implementation is able to cope with di-
mensions (dimension= |Ω|) up to several hundred thousand on a PC within
a reasonable time.

2. The procedure SplitRepresentation implements the above described loop
on dimensions that splits the representation of the group into irreducible
components. It is generated by the C program PreparePolynomialData.
Currently, the code is generated in the Maple language, and the polyno-
mial equations are processed by the Maple implementation of the Gröbner
bases algorithms.

Comparison with the Magma implementation of the MeatAxe.
The Magma database contains a 3906-dimensional representation of the ex-

ceptional group of Lie type G2(5). This representation (over the field GF(2)) is
used in [4] as an illustration of the capabilities of the MeatAxe.

The application of our algorithm to this problem — the calculation showed
that the splitting field in this case is Q — produces the following data.
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Rank: 4. Suborbit lengths: 1, 30, 750, 3125.

3906 ∼= 1⊕ 930⊕ 1085⊕ 1890

B1 =
1

3906

4∑
k=1

Ak

B930 =
5

21

(
A1 +

3

10
A2 +

1

50
A3 −

1

125
A4

)
B1085 =

5

18

(
A1 −

1

5
A2 +

1

25
A3 −

1

125
A4

)
B1890 =

15

31

(
A1 −

1

30
A2 −

1

30
A3 +

1

125
A4

)

Time C: 1.14 sec. Time Maple: 0.8 sec.
The Magma fails to split the 3906-dimensional representation over the field Q,
but we can model to some extent the case of characteristic zero, using a field of
characteristic not dividing |G2(5)|. The smallest such field is GF(11).

Below is the session of the corresponding Magma computation on a computer
with two Intel Xeon E5410 2.33GHz CPUs (time is given in seconds).

> load "g25";
Loading "/opt/magma.21-1/libs/pergps/g25"
The Lie group G( 2, 5 ) represented as a permutation
group of degree 3906.
Order: 5 859 000 000 = 2^6 * 3^3 * 5^6 * 7 * 31.
Group: G
> time Constituents(PermutationModule(G,GF(11)));
[

GModule of dimension 1 over GF(11),
GModule of dimension 930 over GF(11),
GModule of dimension 1085 over GF(11),
GModule of dimension 1890 over GF(11)

]
Time: 282.060

4. Some decompositions for sporadic simple groups.
Generators of representations are taken from the section “Sporadic groups”

of the Atlas [6].
Representations are denoted by their dimensions in bold (possibly with some

signs added to distinguish different representations of the same dimension).
Permutation representations are underlined.
Multiple subrepresentations are underbraced in the decompositions.
All timing data were obtained on a PC with 3.30GHz Intel Core i3 2120 CPU.
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• 1980-dimensional representation of the Mathieu group cover 6.M22

Rank: 17. Suborbit lengths: 16, 143, 843, 3365.

1980 ∼= 1⊕ 21α ⊕ 21β ⊕ 21β ⊕ 55⊕ 99α ⊕ 99β ⊕ 99β ⊕ 105+ ⊕ 105+

⊕ 105− ⊕ 105− ⊕ 120⊕ 154⊕ 210⊕ 330⊕ 330

Time C: 2 sec. Time Maple: 8 h 41 min 1 sec.
• 29155-dimensional representation of the Held group He

Rank:12.Suborbit lengths: 1, 90, 120, 384, 9602, 1440, 2160, 28802, 5760, 11520.

29155 ∼= 1⊕ 51⊕ 51⊕ 680⊕ 1275⊕ 1275︸ ︷︷ ︸⊕1920⊕ 4352

⊕ 7650⊕ 11900

Time C: 5 min 41 sec. Time Maple: 15 sec.
• 66825-dimensional representation of the McLaughlin group cover 3.McL

Rank: 14. Suborbit lengths: 13, 630, 22403, 50403, 80643, 20160.

66825 ∼= 1⊕ 252⊕ 1750⊕ 2772⊕ 2772⊕ 5103α ⊕ 5103β ⊕ 5103β

⊕ 5544⊕ 6336⊕ 6336⊕ 8064⊕ 8064⊕ 9625

Time C: 39 min 36 sec. Time Maple: 14 min 11 sec.
• 98280-dimensional representation of the Suzuki group cover 3.Suz

Rank: 14. Suborbit lengths: 13, 8913, 28163, 5940, 19008, 207363.

98280 ∼= 1⊕ 78⊕ 78⊕ 143⊕ 364⊕ 1365⊕ 1365⊕ 4290⊕ 4290

⊕ 5940⊕ 12012⊕ 14300⊕ 27027⊕ 27027

Time C: 2 h 36 min 29 sec. Time Maple: 7 min 41 sec.

References
[1] Holt, D. F., Eick, B., O’Brien, E. A. Handbook of Computational Group Theory.

Chapman & Hall/CRC, 2005.
[2] Kornyak V. V. Quantum models based on finite groups. J. Phys.: Conf. Ser. 965

012023, 2018. http://stacks.iop.org/1742-6596/965/i=1/a=012023
[3] Kornyak V. V. Modeling Quantum Behavior in the Framework of Permutation

Groups. EPJ Web of Conferences 173 01007, 2018.
https://doi.org/10.1051/epjconf/201817301007

[4] Bosma, W., Cannon, J., Playoust, C., Steel, A. Solving Problems with Magma.
University of Sydney. http://magma.maths.usyd.edu.au/magma/pdf/examples.pdf

[5] Cameron P. J. Permutation Groups. Cambridge University Press, 1999.
[6] Wilson, R. A., et al., Atlas of finite group representations.

http://brauer.maths.qmul.ac.uk/Atlas/v3.

Vladimir V. Kornyak
Laboratory of Information Technologies
Joint Institute for Nuclear Research
Dubna, Russia
e-mail: vkornyak@gmail.com

http://stacks.iop.org/1742-6596/965/i=1/a=012023
https://doi.org/10.1051/epjconf/201817301007
http://magma.maths.usyd.edu.au/magma/pdf/examples.pdf
http://brauer.maths.qmul.ac.uk/Atlas/v3

	References

